publications

2026

  1. arXiv
    Diffusion-based Annealed Boltzmann Generators : benefits, pitfalls and hopes
    Louis Grenioux* and Maxence Noble*
    2026
  2. arXiv
    A Diffusive Classification Loss for Learning Energy-based Generative Models
    Louis Grenioux*, RuiKang OuYang*, and José Miguel Hernández-Lobato
    2026

2025

  1. arXiv
    Riemannian Stochastic Interpolants for Amorphous Particle Systems
    Louis Grenioux*, Leonardo Galliano*, Ludovic Berthier, and 2 more authors
    2025
  2. PhD
    Interactions and opportunities at the crossroads of deep probabilistic modeling and statistical inference through Markov Chains Monte Carlo
    Louis Grenioux
    Institut Polytechnique de Paris, Oct 2025
  3. ICLR
    Improving the evaluation of samplers on multi-modal targets
    Louis Grenioux*, Maxence Noble*, and Marylou Gabrié
    In Frontiers in Probabilistic Inference: Learning meets Sampling, 2025
  4. ICLR
    Learned Reference-based Diffusion Sampler for multi-modal distributions
    Maxence Noble*, Louis Grenioux*, Marylou Gabrié, and 1 more author
    In The Thirteenth International Conference on Learning Representations, 2025

2024

  1. ICML
    Stochastic Localization via Iterative Posterior Sampling
    Louis Grenioux, Maxence Noble, Marylou Gabrié, and 1 more author
    In Proceedings of the 41st International Conference on Machine Learning, 2024

2023

  1. ICML
    Balanced Training of Energy-Based Models with Adaptive Flow Sampling
    Louis Grenioux, Éric Moulines, and Marylou Gabrié
    Workshop on Structured Probabilistic Inference & Generative Modeling, 2023
  2. ICML
    On Sampling with Approximate Transport Maps
    Louis Grenioux, Alain Oliviero Durmus, Eric Moulines, and 1 more author
    In Proceedings of the 40th International Conference on Machine Learning, 2023