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Sampling with Markov Chain Monte Carlo (MCMC)

Guarantees via the duality of log-concavity

Sampling from the observation process with a Markovian scheme

Setting. We want samples from a target probability distribution 7 Markovian projection. Under mild assumptions on T, <Yt)te[0,T]

d . . . . _ , ) Duality of log-concavity
supported on R®, while only having access to its log-density log 7. has its marginals given by the Stochastic Differential Equation (SDE)

There exist time-steps ¢, and ¢}, in (0, 7") such that

MCMC approach. Relying on a w-invariant Markov kernel, these
methods generate a sequence of samples { X k}]kvzp which are approx-
imately distributed according to w. A very popular example 1s the

Unadjusted Langevin Algorithm (ULA), which uses the score V log T, where u(y) = E|X Y} = y|, the denoiser, is the expectation of the Ift > ¢, sample with ULA. «If ¢ < t},, sample with ULA.
posterior of the SL. model defined (up to a normalizing constant) by

dY; = é(t)uy(Ye)dt + odBy , Yo =0 (1)

gt 1s log-concave for ¢ > ¢ pt 1s log-concave for ¢ < ¢,

P P - P \/272 0z NO.]  u; can be well estimated. * But V log p+ 1s not tractable.
— > ~J
k+1 kT Ogﬂ-( ]C) + YEk+1, Y y “k+1 ( ; d) th<ZC‘y) ¢ N(y;()é(t)CC,O'2t Id)dﬂ'(fb) .
S G2 HOLEDE G2 —> We use the SDE (1) to simulate the observation process. \\’\"\‘___,_____—-z— _
* d small * d large In practice. Given a time grid of (0, T"), we rather use a discretized
e log-concave target (V2 log 7w < 0) e multi-modal target version of the SDE (1) obtained with the Euler—Maruyama scheme.
SL as a denoising method. Denote by p; the marginal distribution
Explanation: as the score V log 7 of Y;. The denoiser is linked to the score of p; by Tweedie’s formula :
is driving the ULA particles to the -2 s -
. Y t
closest mode of 7, escaping the at- ut(y) = ﬁ + ﬁv log pt(y) - (2)
traction of the modes (to ensure Log-time
mixing) takes a very long time. — The SL model is actually a score-based diffusion model.

Key idea: set tg € (tq, tp).

Defining our sampling algorithm Yy can be simulated by running ULA with the estimation of

Sampling from multi-modal distributions in high-dimension with Estimating the denoiser. In practice, u; cannot be exactly com- V log py, given by samples from gy, see (2).

MCMC tools under a low computational cost. puted. Hence, we need to approximate it. In our setting, we estimate . Uk is well approximated with ULA as ¢;, will remain log-concave.
up with MCMC (non-parametric approach).

Stochastic Localization via Iterative Posterior Sampling

Introducing our Stochastic Localization (SL) scheme &
Observation process. Given T > 0, we consider the stochastic pro- Given a time grid {tk}i‘;@ of [ty, T'), with g € (0,T), t) =T, and '\2% SLIPS 15 able to recover the rela-
cess (Y;);c1.77 defined by Yy ~ pt,, we define £ o tive weight of a bi-modal Gaussian
€[0,T] : E mixture in high-dimension, where
Yi = a(t)X + | e e Vi1 =Y+ (altgq1) — alty)) Ug + U\/tk+1 — ULk g _ gold-standard MCMC methods fail.
A 5 e The only limitation of SLIPS is
: : : . : . _ _ N g
where (W)~ is a Brownian motion and « : [0, 7] — R is such that: A U, = MCMC-Est(uy, (Yy)), Zp+1 ~ N(0,1y) ggﬂ i to find a suitable £, which needs
c0(0)=0 = Yy L X (full att = 0) Here, U}, is computed by sampling from ¢, (-|Y}.) with ULA. 3 : N . . . to be tuned in practice.
at)/ V't 21 0 — the signal predominates over the = 3 1'16). 32 ¢«  *More experiments on Bayesian
1mension 1
e o 1s strictly increasing = the signal 1s increasingly informative A AIS 4%  SL.IPS Standard PSS a?ld P hYSICS GBS
. v sMC are available in the paper.
Stochastic Localization principle Let X ~ . We assume there exist R > 0 and 7 > 0 such that
X=U+N, |U| <R, N~N(O,721;) . .
It holds approximately that Y, /a(T') ~ . IUIl'< (0, 71) How to contact us:
. If we are able to simulate (Y} )te[o 77> We can seyalle s o, This class of dlstr21but10ns includes Gaussgm mixtures: for a > 0, if e Louis Grenioux : louis.grenioux @polytechnique.edu
) m=wN(—aly oc°l;) + (1 — w)N(+aly o0°1ly), R =aVd, T = 0.
* Maxence Noble : maxence.noble-bourillot@polytechnique.edu



