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Sampling with Markov Chain Monte Carlo (MCMC)

Setting. We want samples from a target probability distribution π
supported on Rd, while only having access to its log-density log π.

MCMC approach. Relying on a π-invariant Markov kernel, these
methods generate a sequence of samples {Xk}Nk=1, which are approx-
imately distributed according to π. A very popular example is the
Unadjusted Langevin Algorithm (ULA), which uses the score ∇ log π,

Xk+1 = Xk + γ∇ log π(Xk) +
√

2γZk+1, γ > 0, Zk+1 ∼ N(0, Id)

Suitable case
• d small

• log-concave target (∇2 log π ≺ 0)

Unfitting case
• d large

• multi-modal target

Explanation: as the score ∇ log π
is driving the ULA particles to the
closest mode of π, escaping the at-
traction of the modes (to ensure
mixing) takes a very long time.

Our goal

Sampling from multi-modal distributions in high-dimension with
MCMC tools under a low computational cost.

Introducing our Stochastic Localization (SL) scheme

Observation process. Given T > 0, we consider the stochastic pro-
cess (Yt)t∈[0,T ] defined by

Yt = α(t)X + σWt, X ∼ π

where (Wt)t≥0 is a Brownian motion and α : [0, T ] → R+ is such that:

• α(0) = 0 =⇒ Y0 ⊥ X (full noise at t = 0)

• α(t)/
√
t

t→T−−−→ ∞ =⇒ the signal predominates over the noise

• α is strictly increasing =⇒ the signal is increasingly informative

Stochastic Localization principle

It holds approximately that YT/α(T ) ∼ π.

=⇒ If we are able to simulate (Yt)t∈[0,T ], we can sample from π.

Sampling from the observation process with a Markovian scheme

Markovian projection. Under mild assumptions on π, (Yt)t∈[0,T ]
has its marginals given by the Stochastic Differential Equation (SDE)

dYt = α̇(t)ut(Yt)dt + σdBt , Y0 = 0 (1)

where ut(y) = E[X|Yt = y], the denoiser, is the expectation of the
posterior of the SL model defined (up to a normalizing constant) by

dqt(x|y) ∝ N(y;α(t)x, σ2t Id)dπ(x) .

=⇒ We use the SDE (1) to simulate the observation process.
In practice. Given a time grid of (0, T ), we rather use a discretized
version of the SDE (1) obtained with the Euler–Maruyama scheme.
SL as a denoising method. Denote by pt the marginal distribution
of Yt. The denoiser is linked to the score of pt by Tweedie’s formula

ut(y) =
y

α(t)
+

σ2t

α(t)
∇ log pt(y) . (2)

=⇒ The SL model is actually a score-based diffusion model.

Defining our sampling algorithm

Estimating the denoiser. In practice, ut cannot be exactly com-
puted. Hence, we need to approximate it. In our setting, we estimate
ut with MCMC (non-parametric approach).

Stochastic Localization via Iterative Posterior Sampling

Given a time grid {tk}Kk=0 of [t0, T ), with t0 ∈ (0, T ), tK = T , and
Y0 ∼ pt0, we define

Yk+1 = Yk + (α(tk+1)− α(tk)) Ûk + σ
√

tk+1 − tkZk+1

Ûk = MCMC-Est(utk(Yk)), Zk+1 ∼ N(0, Id)

Here, Ûk is computed by sampling from qtk(·|Yk) with ULA.

Target framework (for theoretical results)

Let X ∼ π. We assume there exist R > 0 and τ > 0 such that

X = U +N, ∥U∥ ≤ R, N ∼ N(0, τ2Id) .

This class of distributions includes Gaussian mixtures: for a > 0, if
π = wN(−a1d, σ

2Id) + (1− w)N(+a1d, σ
2Id), R = a

√
d, τ = σ.

Guarantees via the duality of log-concavity

Duality of log-concavity

There exist time-steps tq and tp in (0, T ) such that

qt is log-concave for t > tq

• If t > tq, sample with ULA.

• ut can be well estimated.

pt is log-concave for t < tp

• If t < tp, sample with ULA.

• But ∇ log pt is not tractable.

Key idea: set t0 ∈ (tq, tp).
• Y0 can be simulated by running ULA with the estimation of
∇ log pt0 given by samples from qt0, see (2).

• Ûk is well approximated with ULA as qtk will remain log-concave.

Numerical results
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SLIPS Standard

SLIPS is able to recover the rela-
tive weight of a bi-modal Gaussian
mixture in high-dimension, where
gold-standard MCMC methods fail.

• The only limitation of SLIPS is
to find a suitable t0, which needs
to be tuned in practice.

• More experiments on Bayesian
tasks and physics field systems
are available in the paper.
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