Stochastic Localization via Iterative Posterior Sampling Louis Grenioux^{*}, Maxence Noble^{*}, Marylou Gabrié, Alain Oliviero Durmus CMAP, École Polytechnique, France

Sampling with Markov Chain Monte Carlo (MCMC)

Setting. We want samples from a target probability distribution π supported on \mathbb{R}^d , while only having access to its log-density $\log \pi$.

MCMC approach. Relying on a π -invariant Markov kernel, these methods generate a sequence of samples $\{X_k\}_{k=1}^N$, which are approximately distributed according to π . A very popular example is the *Unadjusted Langevin Algorithm* (ULA), which uses the score $\nabla \log \pi$,

 $X_{k+1} = X_k + \gamma \nabla \log \pi(X_k) + \sqrt{2\gamma} Z_{k+1}, \ \gamma > 0, \ Z_{k+1} \sim \mathsf{N}(0, \mathbf{I}_d)$

Suitable case

- $\bullet d \text{ small}$
- log-concave target ($\nabla^2 \log \pi \prec 0$)

Explanation: as the score $\nabla \log \pi$ is driving the ULA particles to the closest mode of π , escaping the attraction of the modes (to ensure *mixing*) takes a very long time.

Our goal

Sampling from multi-modal distributions in high-dimension with MCMC tools under a low computational cost.

Introducing our Stochastic Localization (SL) scheme

Observation process. Given T > 0, we consider the stochastic process $(Y_t)_{t \in [0,T]}$ defined by

$$Y_t = \alpha(t)X + \sigma W_t, \ X \sim \pi$$

where $(W_t)_{t>0}$ is a Brownian motion and $\alpha : [0, T] \to \mathbb{R}_+$ is such that:

• $\alpha(0) = 0 \implies Y_0 \perp X$ (full noise at t = 0)

- $\alpha(t)/\sqrt{t} \xrightarrow{t \to T} \infty \implies$ the signal predominates over the noise
- α is strictly increasing \implies the signal is increasingly informative

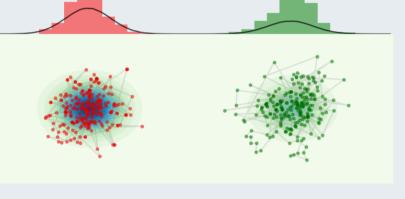
Stochastic Localization principle

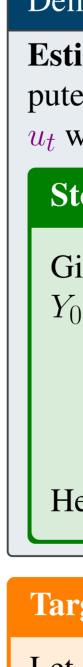
It holds approximately that $Y_T/\alpha(T) \sim \pi$.

 \implies If we are able to simulate $(Y_t)_{t \in [0,T]}$, we can sample from π .

Unfitting case

- *d* large
- multi-modal target





Let

This class of distributions includes Gaussian mixtures: for a > 0, if $\pi = w \mathsf{N}(-a\mathbf{1}_d, \sigma^2 \mathbf{I}_d) + (1-w) \mathsf{N}(+a\mathbf{1}_d, \sigma^2 \mathbf{I}_d), R = a\sqrt{d}, \tau = \sigma.$

Markovian projection. Under mild assumptions on π , $(Y_t)_{t \in [0,T]}$ has its marginals given by the Stochastic Differential Equation (SDE)

(1)

Sampling from the observation process with a Markovian scheme

$$dY_t = \dot{\alpha}(t) u_t(Y_t) dt + \sigma dB_t , Y_0 = 0$$

where $u_t(y) = \mathbb{E}[X|Y_t = y]$, the *denoiser*, is the expectation of the posterior of the SL model defined (up to a normalizing constant) by

$$\mathrm{d}q_t(x|y) \propto \mathsf{N}(y;\alpha(t)x,\sigma^2 t \mathrm{I}_d)\mathrm{d}\pi(x)$$

 \implies We use the SDE (1) to simulate the observation process. In practice. Given a time grid of (0, T), we rather use a discretized version of the SDE (1) obtained with the *Euler–Maruyama* scheme. **SL as a denoising method.** Denote by p_t the *marginal* distribution of Y_t . The denoiser is linked to the score of p_t by *Tweedie's formula*

$$u_t(y) = \frac{y}{\alpha(t)} + \frac{\sigma^2 t}{\alpha(t)} \nabla \log p_t(y) .$$
(2)

 \implies The SL model is actually a score-based diffusion model.

Defining our sampling algorithm

Estimating the denoiser. In practice, u_t cannot be exactly computed. Hence, we need to approximate it. In our setting, we estimate *u_t* with MCMC (*non-parametric* approach).

Stochastic Localization via Iterative Posterior Sampling

Given a time grid $\{t_k\}_{k=0}^K$ of $[t_0, T)$, with $t_0 \in (0, T)$, $t_K = T$, and $Y_0 \sim p_{t_0}$, we define

$$Y_{k+1} = Y_k + (\alpha(t_{k+1}) - \alpha(t_k)) \hat{U}_k + \sigma \sqrt{t_{k+1} - t_k} Z_{k+1}$$

$$\hat{U}_{k} = \mathbf{MCMC-Est}(u_{t_{k}}(Y_{k})), Z_{k+1} \sim \mathsf{N}(0, \mathbf{I}_{d})$$

Here, U_k is computed by sampling from $q_{t_k}(\cdot|Y_k)$ with ULA.

Target framework (for theoretical results)

$$X \sim \pi$$
. We assume there exist $R > 0$ and $\tau > 0$ such that

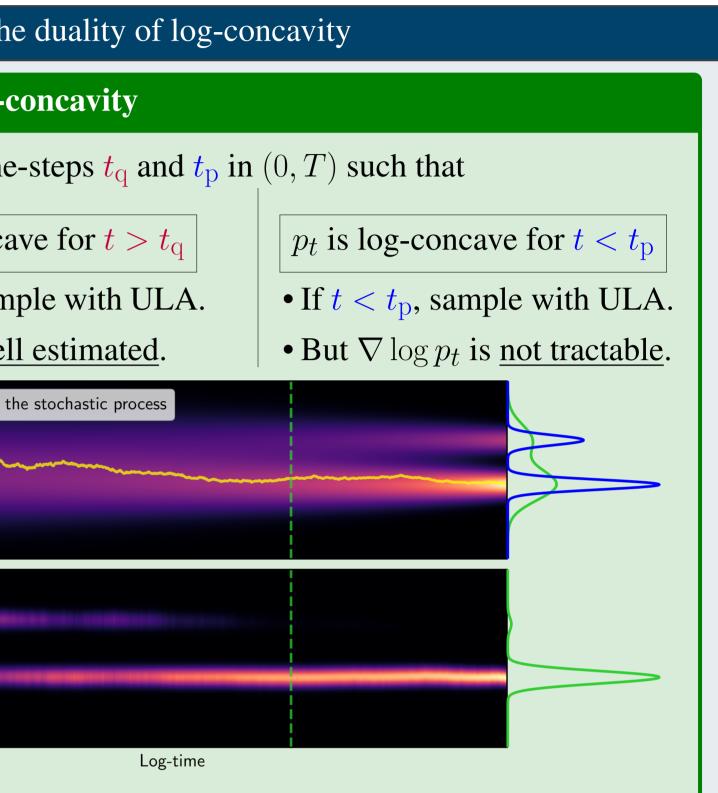
$$X = U + N, \ \|U\| \le R, \ N \sim \mathsf{N}(0, \tau^2 \mathbf{I}_d)$$

Guarantees via the
Duality of log-
There exist time

$$q_t$$
 is log-conce
 \cdot If $t > t_q$, san
 $\cdot u_t$ can be we
 $\int_{10^{10}}^{10^{10}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$
 $(1)^{10^{11}}$

How to contact us:

- Maxence Noble : maxence.noble-bourillot@polytechnique.edu



$\in (\mathbf{t}_{q}, \mathbf{t}_{p}).$

mulated by running ULA with the estimation of by samples from q_{t_0} , see (2).

proximated with ULA as q_{t_k} will remain log-concave.

SLIPS is able to recover the *rela*tive weight of a bi-modal Gaussian mixture in high-dimension, where gold-standard MCMC methods fail.

- The only limitation of SLIPS is to find a suitable t_0 , which needs to be tuned in practice.
- More experiments on Bayesian tasks and physics field systems are available in the paper.

• Louis Grenioux : louis.grenioux@polytechnique.edu