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Energy-Based Models

Energy-Based Models (EBM) are flexible and powerful density esti-
mation tools. EBM models a target distribution using the Gibbs distri-

bution
1

palr) = 7 exp(~Ey(x),

where Fj is a neural network with weights 6. The parameters 6 can be
estimated using maximum likelihood

L(0) = —Ep[log pg(X)],

where p* is the data distribution. The gradient of £ can be expressed as
the difference of two expectations

VoL(0) = Ep[VgEg(X)] — Ep,[VgEg(X)].

A Sampling py can be high-dimensional and very multimodal - in
which case sampling is hard.

Our contribution (arXiv:2306.00684)

Sampling py using flow-MCMC [Gabri€ et al., 2022] which uses a
companion Normalizing Flows (NF) as a proposal in a MCMC algo-
rithm.

e In [Nyjkamp et al., 2022], authors developed NT-EBM which lever-
ages neutra-MCMC to sample py with a pre-trained flow;

e In [Xie et al., 2022], authors developed CoopFlow where they use
a flow to reset the chains of local MCMC which 1s closer to flow-
MCMC.

Using NF in MCMC
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e Multimodality flow-MCMC algorithms are able to mix between
modes while neutra-MCMC algorithms get stuck in the latent space.
This 1s because NFs can’t erase energy barriers in the latent space.

e Dimensionality flow-MCMC doesn’t scale in high-dimension and
require an increasingly good flow.

More details can be found in our recent paper arXiv/2302.04763
[Grenioux et al., 2023a].
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The EBM trained with ULA 1n (b) doesn’t approximate well the target
(a) because the MCMC chains (¢) don’t mix between modes. Using
flow-MCMC (g) with its companion flow (e) provides a good approxi-
mation (f).

Experiments in 2D
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