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Energy-Based Models
Energy-Based Models (EBM) are flexible and powerful density esti-
mation tools. EBM models a target distribution using the Gibbs distri-
bution

pθ(x) =
1

Zθ
exp(−Eθ(x)),

where Eθ is a neural network with weights θ. The parameters θ can be
estimated using maximum likelihood

L(θ) = −Ep⋆[log pθ(X)],

where p⋆ is the data distribution. The gradient of L can be expressed as
the difference of two expectations

∇θL(θ) = Ep⋆[∇θEθ(X)]− Epθ[∇θEθ(X)].

. Sampling pθ can be high-dimensional and very multimodal - in
which case sampling is hard.

Our contribution (arXiv:2306.00684)
Sampling pθ using flow-MCMC [Gabrié et al., 2022] which uses a
companion Normalizing Flows (NF) as a proposal in a MCMC algo-
rithm.

• In [Nijkamp et al., 2022], authors developed NT-EBM which lever-
ages neutra-MCMC to sample pθ with a pre-trained flow;

• In [Xie et al., 2022], authors developed CoopFlow where they use
a flow to reset the chains of local MCMC which is closer to flow-
MCMC.

Using NF in MCMC

• Multimodality flow-MCMC algorithms are able to mix between
modes while neutra-MCMC algorithms get stuck in the latent space.
This is because NFs can’t erase energy barriers in the latent space.

• Dimensionality flow-MCMC doesn’t scale in high-dimension and
require an increasingly good flow.

More details can be found in our recent paper arXiv/2302.04763
[Grenioux et al., 2023a].

Step of joint training of an EBM pθ and a flow Tα

Sample pθk using FlowMCMC leveraging Tαk
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Update θk using gradient descent

θk+1← θk − γ
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Update αk using gradient ascent on the likelihood

αk+1← αk + λ
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Motivating example

The EBM trained with ULA in (b) doesn’t approximate well the target
(a) because the MCMC chains (c) don’t mix between modes. Using
flow-MCMC (g) with its companion flow (e) provides a good approxi-
mation (f).

Experiments in 2D
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