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The sampling problem
Sampling is a key task in many domains

Bayesian Inference Statistical Mechanics Chemistry Lattice QCD

Given a target distribution π sampling can be difficult

multi-modal or ill-conditionned

and in very high-dimension.

Sampling with transport maps
To ease sampling, it was recently proposed to approximate the tagret
distribution π as the push-forward of a simple distribution ρ through
a transport map T : T#ρ ≃ π .

. Learning T is difficult and leads to approximation errors.
¥ This can be mitigated by using T in Monte-Carlo schemes.

neural-IS [Müller et al., 2019] : flow as a proposal in IS
λT = T#ρ ≃ π ω = π/λT ω = π/λT ω = π/λT

Expectations can be computed using EX∼π[f (X)] ≃ ∑N
i=1 ω(X

(i))f (X(i))

flow-MCMC [Gabrié et al., 2022] : flow as a proposal in MH
x̂1 ∼ λT α =

π(x̂1)×λT (x0)
π(x0)×λT (x̂1)

α =
π(x̂1)×λT (x0)
π(x0)×λT (x̂1)

α =
π(x̂1)×λT (x0)
π(x0)×λT (x̂1)

(1) Suggest x̂k (2) Evaluate λT (3) Evaluate π
(4) Set xk = x̂k with

prob. α else xk = xk−1
Iterating (1) → (4) for N steps builds a Markov chain with π as invariant distribution

neutra-MCMC [Hoffman et al., 2019] : flow for reparametrization
T−1
#π ≃ ρ Sample T−1

#π
T−→ Approximate π

Contributions
• Comparison of the different algorithms depending on flow quality,
multi-modality, poor conditioning and dimensionality

• New theoretical result on the mixing time of flow-MCMC/IMH
• Validation on real-world experiments

neutra-MCMC is more robust to imperfections
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•π is a poorly conditioned
Gaussian in dimension 128

•Tt is an analytical flow with
quality parameter t

• neutra-MCMC is less sensi-
tive to t than flow-MCMC
or neural-IS

e Real experiment : Confirmed on sparse logistic regression

neutra-MCMC doesn’t ease sampling in latent space

•π is a mixture
•T cannot transform some-
thing multimodal into
something unimodal

• This limitation is due to the
constrains of the flow

• flow-MCMC/neural-IS can
mix between modes

e Real experiment : Confirmed on a molecular system and a field system

New flow-MCMC’s mixing time bound
Assuming that π is log-concave and that the importance weights
ω = π/λ verify

∀x,y ∈ B(0,R), |logω(x)− logω(y)| ≤ CR ∥x− y∥,

then the mixing time of flow-MCMC with proposal λ is bounded as

τmix(µ, ϵ) ≤ βC2
R.

where β is a constant. As better λ lead to smaller CR, this results
provides a quantitative bound depending on the quality of λ.

flow-MCMC doesn’t scale in high-dimension
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•π is a ill-conditioned distribution
• flow-MCMC/neural-IS deterioates
faster than neutra-MCMC with d

• The previous theorem applied with unit
Gaussian as π and λ = N (0, (1 + ϵ)2Id)

gives that the error ϵ should scale as
O(1/d) at a fixed computational budget

e Real experiment : Confirmed on a field system and image data

Conclusion
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sampling with approximate transport maps.

[Grenioux et al., 2023b] Grenioux, L., Éric Moulines, and Gabrié, M. (2023b). Balanced training of
energy-based models with adaptive flow sampling.

[Hoffman et al., 2019] Hoffman, M. D., Sountsov, P., Dillon, J. V., Langmore, I., Tran, D., and
Vasudevan, S. (2019). NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural
Transport. In 1st Symposium on Advances in Approximate Bayesian Inference, 2018 1–5.

[Müller et al., 2019] Müller, T., Mcwilliams, B., Rousselle, F., Gross, M., and Novák, J. (2019).
Neural importance sampling. ACM Trans. Graph., 38(5).


