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Setting. We want samples from a target probability distribution m sup- e Maxence Noble : maxence.noble-bourillot@polytechnique.edu
ported on R% while only having access to its log-density log .

A simple yet challenging experiment

Multi-modality. The densities of multi-modal distributions have multiple

local minima (called modes). This give rise to two main challenges (1) finding Target. We introduce the following bi-modal Gaussian mixture

each que and (2) Ensuring that the samples are drawn with the right mode T = SN (=aly, ) + =N (+aly o)

proportions. 3 3

Mode finding. DBecause finding all the local minima of an unknown func- where a > 0 and X1, X9 are two diagonal matrices with the same chal-
tion is NP hard, we focus here on the second challenge. lenging conditioning. For this target, we consider the mode partition

S| = {x S RY . ./\/(CI?, —al,, 21) > N(QS, +al,, 22)} , 59 = Sf

Mode weight recovery : the underlying challenging task

Even with known modes, estimating their proportions remains which verifies wy = 2/3 if @ is taken large.
challenging. Markov Chain Monte Carlo (MCMC) uses local transition This distribution is hard to sam- .
kernels to guide particles toward high-density areas. While effective in concave ple from both at the local scale .
regions, it often traps the chain within modes, limiting exploration across the (difficult mode conditioning) and at .
full distribution. the global scale (the modes are not ~ o5
Mode weights estimation. Given a partition {Sk}é(zl of the support equally balanced). 101 .
of a multi-modal target m with K modes, mode weights are defined as Metric. We report the bias and .
wp = 7(S}) = / ]lsk(@ﬂdx)- variance of.the Mopte Carlo estimate ~2.0— - : :
of wy, while varying two hyperpa- X
Mode weights give simple, interpretable insight into the global structure of a rameters: the distance between the Figure 1: Target Gaussian mix-
multi-modal target; we recommend estimating them whenever possible. modes a as well as the dimension d. ture with a =1, d = 2

Results on mode weight estimation for our proposed bi-modal Gaussian mixture
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. Averaged absolute error of the estimation. (Blue): Standard deviation of the estimation. (Left) Up to dimension 64. (Right) Up to
dimension 256. Hashed areas indicate settings with systematic mode collapse in the sampling process.

MCMC /VI methods struggle with multi-modal distributions (as they are limited to local exploration). IS suffers from increasing between-mode
distance (leading to high variance). While annealed MCMC methods degrade with both dimensionality and mode separation, diffusion-based
samplers offer a promising alternative, but they require for now careful tuning and their general applicability is still under exploration.

Evaluated sampling methods

e Local MCMC (MCMC): Standard and widely-used, but they are intrinsically limited to local exploration;

e Importance Sampling (IS): Estimates expectations based on reweighted samples taken from an easy-to-sample proposal. We test Gaussian and
flow-based proposals that are fitted to true samples:;

e Variational Inference (VI): Optimizes parametric distribution that approximates bests the target among a fixed variational family. We explore both
Gaussian and flow-based variational tfamilies;

o Annealed samplers: Use a sequence of explicitly defined intermediate distributions to bridge an easy-to-sample distribution to the target.

— Sequential Monte Carlo (SMC): Sequential MCMC with reweighting steps [Del Moral et al., 2006];
— Replica Exchange (RE): Parallel MCMC chains with Metropolis-Hastings swaps |[Swendsen and Wang, 1986].

o Diffusion-based samplers: Following diffusion models, these methods simulate a SDE bridging an easy-to-sample distribution to the target

— Stochastic Localization via Iterative Posterior Sampling (SLIPS) : Estimates on-the-fly the intractable SDE drift using MCMC
|Grenioux et al., 2024];

— Denoising Diffusion Sampler (DDS) : Learns drift via a neural network solving a variational problem on path measures |Vargas et al., 2023].
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