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Sampling from multi-modal distributions

Setting. We want samples from a target probability distribution π sup-
ported on Rd, while only having access to its log-density log π.

Multi-modality. The densities of multi-modal distributions have multiple
local minima (calledmodes). This give rise to two main challenges (1) finding
each mode and (2) Ensuring that the samples are drawn with the right mode
proportions.
Mode finding. Because finding all the local minima of an unknown func-
tion is NP hard, we focus here on the second challenge.

Mode weight recovery : the underlying challenging task

Even with known modes, estimating their proportions remains
challenging. Markov Chain Monte Carlo (MCMC) uses local transition
kernels to guide particles toward high-density areas. While effective in concave
regions, it often traps the chain within modes, limiting exploration across the
full distribution.

Mode weights estimation. Given a partition {Sk}Kk=1 of the support
of a multi-modal target π with K modes, mode weights are defined as

wk = π(Sk) =

∫
1Sk

(x)π(dx).

Mode weights give simple, interpretable insight into the global structure of a
multi-modal target; we recommend estimating them whenever possible.

• Louis Grenioux : louis.grenioux@polytechnique.edu

•Maxence Noble : maxence.noble-bourillot@polytechnique.edu

A simple yet challenging experiment

Target. We introduce the following bi-modal Gaussian mixture

π =
2

3
N (−a1d,Σ1) +

1

3
N (+a1d,Σ2)

where a > 0 and Σ1,Σ2 are two diagonal matrices with the same chal-
lenging conditioning. For this target, we consider the mode partition

S1 = {x ∈ Rd : N (x;−a1d,Σ1) > N (x; +a1d,Σ2)} , S2 = Sc
1

which verifies w1 = 2/3 if a is taken large.

Figure 1: Target Gaussian mix-
ture with a = 1, d = 2

This distribution is hard to sam-
ple from both at the local scale
(difficult mode conditioning) and at
the global scale (the modes are not
equally balanced).

Metric. We report the bias and
variance of the Monte Carlo estimate
of w1, while varying two hyperpa-
rameters: the distance between the
modes a as well as the dimension d.

Results on mode weight estimation for our proposed bi-modal Gaussian mixture
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(Orange): Averaged absolute error of the estimation. (Blue): Standard deviation of the estimation. (Left) Up to dimension 64. (Right) Up to
dimension 256. Hashed areas indicate settings with systematic mode collapse in the sampling process.

Take-home messages

MCMC/VI methods struggle with multi-modal distributions (as they are limited to local exploration). IS suffers from increasing between-mode
distance (leading to high variance). While annealed MCMC methods degrade with both dimensionality and mode separation, diffusion-based
samplers offer a promising alternative, but they require for now careful tuning and their general applicability is still under exploration.

Evaluated sampling methods

•Local MCMC (MCMC): Standard and widely-used, but they are intrinsically limited to local exploration;

• Importance Sampling (IS): Estimates expectations based on reweighted samples taken from an easy-to-sample proposal. We test Gaussian and
flow-based proposals that are fitted to true samples;

•Variational Inference (VI): Optimizes parametric distribution that approximates bests the target among a fixed variational family. We explore both
Gaussian and flow-based variational families;

•Annealed samplers : Use a sequence of explicitly defined intermediate distributions to bridge an easy-to-sample distribution to the target.

– Sequential Monte Carlo (SMC): Sequential MCMC with reweighting steps [Del Moral et al., 2006];

–Replica Exchange (RE): Parallel MCMC chains with Metropolis-Hastings swaps [Swendsen and Wang, 1986].

•Diffusion-based samplers : Following diffusion models, these methods simulate a SDE bridging an easy-to-sample distribution to the target

– Stochastic Localization via Iterative Posterior Sampling (SLIPS) : Estimates on-the-fly the intractable SDE drift using MCMC
[Grenioux et al., 2024];

–Denoising Diffusion Sampler (DDS) : Learns drift via a neural network solving a variational problem on path measures [Vargas et al., 2023].
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