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Sampling from multi-modal distributions

Setting. We want samples from a target probability distribution
π supported on Rd, while only having access to its log-density log π.

The difficulty. This task is especially difficult when π is multi-
modal as the samples needs to reflect both the local properties (mean,
covariance, . . . ) and the global properties (proportions between dis-
tinct non-zero probability areas).

Our (realistic) assumption. In this work, we simplify the prob-
lem by assuming access the the locations of the modes.

Standard sampling approaches

Classic MCMC. Markov Chain Monte Carlo (MCMC) builds
chains using local transitions that preserve π, but such moves often
prevent the chain from escaping modes, limiting global exploration.

Annealed MCMC. Annealing methods run MCMC over a se-
quence of distributions that bridge an easy-to-sample distribution ρ to
the target π, typically via a geometric interpolation. While effective
in low dimensions, these schemes struggle with high dimension.

Diffusion Models : from generative to sampling approach

Diffusion Models (DMs) are a powerful class of generative models
based on a noising diffusion process (Xt)t∈[0,T ], defined by

dXt = f (t)Xtdt + g(t)dBt, X0 ∼ π

which gradually transforms the data into noiseXT ∼ ρ, with P⋆ denot-
ing the associated path measure and pt the density of P⋆t. To generate
samples, DMs simulate the time-reversed process (Yt)t∈[0,T ] ∼ (P⋆)R

dYt = −
[
f (T − t)Yt − g2(T − t)∇ log pT−t(Yt)

]
dt + g(T − t)dWt

with Y0 ∼ ρ, which satisfies Yt
L
= XT−t, i.e., YT ∼ π. Still, the

score function ∇ log pt is intractable and needs to be approximated.
In practice, one aims to learn it with a neural network sθt . We denote

by Pθ the path measure of the obtained denoising diffusion process.

Generative setting. Using samples from π, sθt can be efficiently
optimized via a Denoising Score Matching regression loss.

Sampling setting. This work tackles learning sθt from model sam-
ples via a variational approach, without requiring access to π samples.

Reference-based variational approach for diffusion sampling

We aim to minimize the log-variance variational loss on path measures

L(θ) = Var
[
log

(
dPθ/d(P⋆)R

)(
Y θ̂
[0,T ]

)]
, Y θ̂

[0,T ] ∼ Pθ̂

where θ̂ = StopGrad(θ). As such, this loss is however not tractable...

Following [1], we introduce a reference process Pref, defined as the
exact noising process for a known distribution πref, which yields to
simplifying the log-density ratio

log
dPθ

d(P⋆)R
(
Y[0,T ]

)
= log

dPθ

d(Pref)R
(
Y[0,T ]

)
+ log

πref

π
(YT ) .

By further parameterizing sθt as an additive control term

sθt = ∇ log preft + g(t)−1ϕθt

we obtain the tractable (but not simulation free) objective

L(θ) = Var

[∫ T
0

{
1
2∥ϕ

θ
T−t(Y

θ̂
t )∥2dt + ϕθT−t(Y

θ̂
t )

⊤dBt

}
+ log πref

π (Y θ̂
T )

]

Our novelty : learning the reference process from MCMC data

Previous designs of Pref. Prior works [3, 2] use a Gaus-
sian πref with fixed variance, which requires heavy tuning and

strong constraints on the neural network ϕθt .

Our intuition on the role of the reference process

If well chosen, the reference process may drive Y θ
t to high-density

regions, thus simplifying the numerical optimization procedure.

=⇒ We propose to learn Pref based on approximate data from π !

LRDS methodology. We combine the three following steps:

1. Generate approximate samples from π via MCMC;

2. Fit a Diffusion Model on this data to obtain Pref;
3. Minimize the log-variance loss L w.r.t. θ to obtain Pθ.
(1) MCMC

✓ Local

× Global

(2) Learn Pref

from MCMC

data

(3) Learn Pθ

using Pref

with L

(4) Run Pθ

✓ Local

✓ Global

How to learn the scores and the densities of the reference process ?

The loss L requires both the scores ∇ log preft and the density πref. We
propose to learn them based on MCMC data in two ways.

•Gaussian Mixture Model (GMM) – cheap but limited
Fit a GMM on MCMC data to model πref (see below); scores are
computed analytically at no extra cost;

Figure 1. Learned πref and samples from GMM-LRDS on a Gaussian mixture.

•Energy-Based Model (EBM) – costly but expressive
Learn preft via a new Maximum Likelihood approach using a neural

net. Recover πref = pref0 and get scores by differentiating the net.

Figure 2. Samples from GMM-LRDS and EBM-LRDS on the checkerboard

Numerical results

We apply our methodology on a wide range of known multi-modal dis-
tributions and observe a significant performance gap against concur-
rent methods (annealed MCMC & diffusion-based sampling methods).

0.000 0.001 0.002 0.003

h

1.0

1.5

2.0

2.5

3.0

w
−
/
w

+

Laplace approx.
Laplace approx.
(2nd order)
GMM-LRDS

Figure 3. Estimation of the mode weight ra-

tio in the challenging ϕ4 system using GMM-

LRDS. The external field h breaks the sys-

tem’s symmetry, creating an imbalance be-

tween modes. Laplace approximation serves

as the reference ground truth.

Limitations. Learning both Pref and Pθ may be expensive in prac-
tice. Moreover, similarly to previous approaches, LRDS doesn’t scale
well with high dimension or with high number of modes.
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