Learned Reference-based Diffusion Sampler for multi-modal distributions

Maxence Noble^{*}, Louis Grenioux^{*}, Marylou Gabrié, Alain Durmus

CMAP, École Polytechnique, France

Sampling from multi-modal distributions

Setting. We want **samples** from a target probability distribution π supported on \mathbb{R}^d , while only having access to its log-density log π .

The difficulty. This task is especially difficult when π is *multimodal* as the samples needs to reflect both the <u>local</u> properties (mean, covariance, ...) and the global properties (proportions between distinct non-zero probability areas).

Our (realistic) assumption. In this work, we simplify the problem by assuming access the the locations of the modes.

Standard sampling approaches

Classic MCMC. Markov Chain Monte Carlo (MCMC) builds chains using local transitions that preserve π , but such moves often prevent the chain from escaping modes, limiting global exploration.

Annealed MCMC. Annealing methods run MCMC over a sequence of distributions that bridge an easy-to-sample distribution ρ to the target π , typically via a *geometric interpolation*. While effective in low dimensions, these schemes struggle with high dimension.

Diffusion Models : from generative to sampling approach

Diffusion Models (DMs) are a powerful class of generative models based on a noising diffusion process $(X_t)_{t \in [0,T]}$, defined by

$$\mathrm{d}X_t = f(t)X_t\mathrm{d}t + g(t)\mathrm{d}B_t, X_0 \sim \pi$$

which gradually transforms the data into noise $X_T \sim \rho$, with \mathbb{P}^{\star} denoting the associated path measure and p_t the density of \mathbb{P}^{\star}_t . To generate samples, DMs simulate the *time-reversed* process $(Y_t)_{t \in [0,T]} \sim (\mathbb{P}^{\star})^R$

 $dY_t = -\left[f(T-t)Y_t - g^2(T-t)\nabla \log p_{T-t}(Y_t)\right]dt + g(T-t)dW_t$

with $Y_0 \sim \rho$, which satisfies $Y_t \stackrel{\mathcal{L}}{=} X_{T-t}$, i.e., $Y_T \sim \pi$. Still, the score function $\nabla \log p_t$ is <u>intractable</u> and needs to be approximated. In practice, one aims to learn it with a neural network s_t^{θ} . We denote by \mathbb{P}^{θ} the path measure of the obtained *denoising diffusion process*.

Generative setting. Using samples from π , s_t^{θ} can be efficiently optimized via a *Denoising Score Matching* regression loss.

Sampling setting. This work tackles learning s_t^{θ} from model samples via a variational approach, without requiring access to π samples.

we obtain the tractable (but not simulation free) objective

 $\mathcal{L}(heta$

Reference-based variational approach for diffusion sampling

We aim to minimize the log-variance variational loss on path measures

$$\mathcal{L}(\theta) = \operatorname{Var}\left[\log\left(\mathrm{d}\mathbb{P}^{\theta}/\mathrm{d}(\mathbb{P}^{\star})^{R}\right)\left(Y_{[0,T]}^{\hat{\theta}}\right)\right], \ Y_{[0,T]}^{\hat{\theta}} \sim \mathbb{P}^{\theta}$$

where $\hat{\theta} = \text{StopGrad}(\theta)$. As such, this loss is however not tractable...

Following [1], we introduce a *reference process* \mathbb{P}^{ref} , defined as the exact noising process for a known distribution π^{ref} , which yields to simplifying the log-density ratio

$$\log \frac{\mathrm{d}\mathbb{P}^{\theta}}{\mathrm{d}(\mathbb{P}^{\star})^{R}} \left(Y_{[0,T]}\right) = \log \frac{\mathrm{d}\mathbb{P}^{\theta}}{\mathrm{d}(\mathbb{P}^{\mathrm{ref}})^{R}} \left(Y_{[0,T]}\right) + \log \frac{\pi^{\mathrm{ref}}}{\pi} \left(Y_{T}\right) \,.$$

By further parameterizing s_t^{θ} as an additive *control* term

$$s_t^{\theta} = \nabla \log p_t^{\text{ref}} + g(t)^{-1} \phi_t^{\theta}$$

$$) = \operatorname{Var}\left[\int_{0}^{T} \left\{\frac{1}{2} \|\phi_{T-t}^{\theta}(Y_{t}^{\hat{\theta}})\|^{2} \mathrm{d}t + \phi_{T-t}^{\theta}(Y_{t}^{\hat{\theta}})^{\top} \mathrm{d}B_{t}\right\} + \log \frac{\pi^{\mathrm{ref}}}{\pi}(Y_{T}^{\hat{\theta}})\right]$$

Our novelty : learning the reference process from MCMC data

Previous designs of \mathbb{P}^{ref}. Prior works [3, 2] use a Gaussian π^{ret} with fixed variance, which requires heavy tuning and strong constraints on the neural network ϕ_t^{θ} .

Our intuition on the role of the reference process

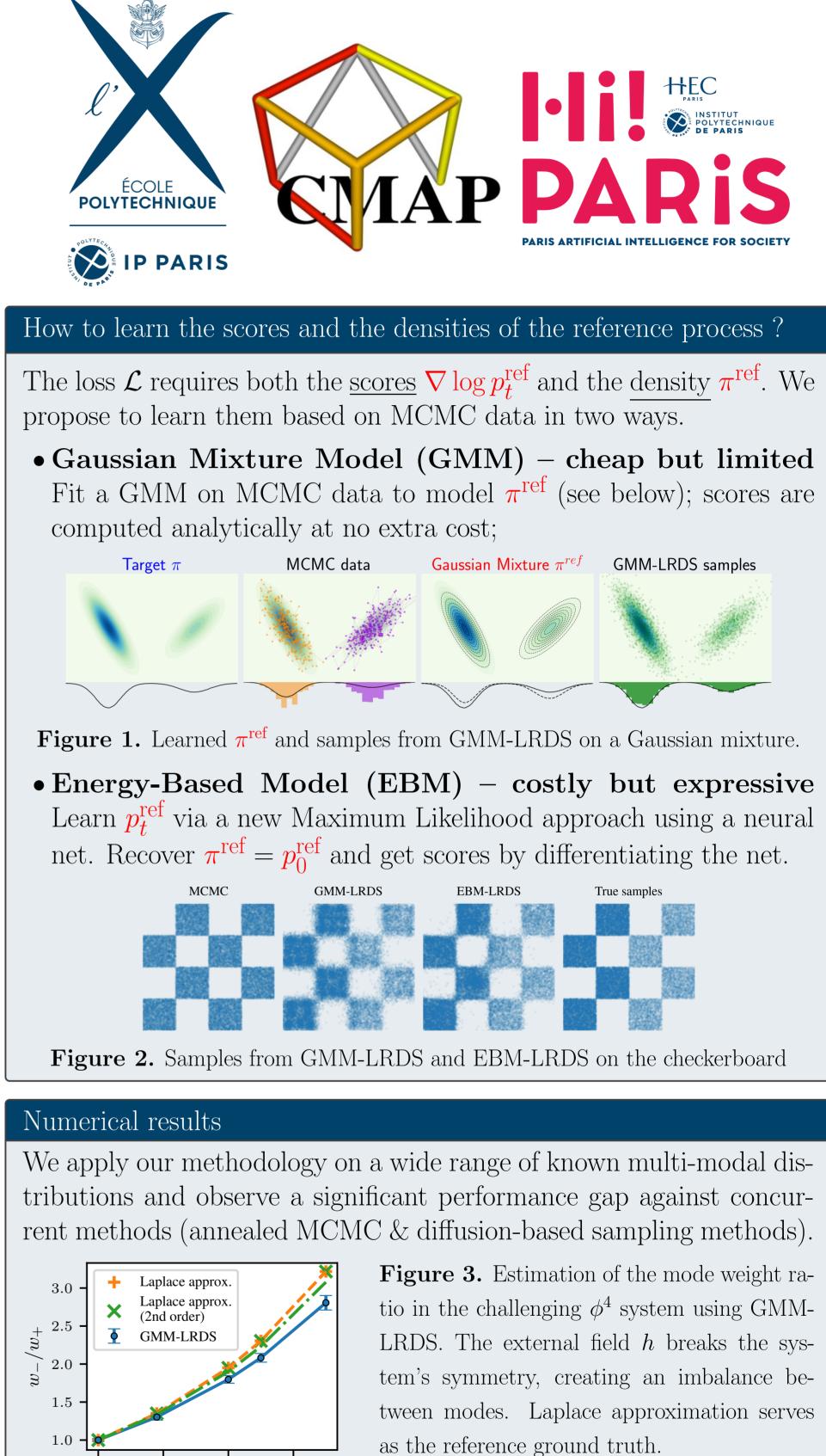
If well chosen, the reference process may drive Y_t^{θ} to high-density regions, thus simplifying the numerical optimization procedure. \implies We propose to learn \mathbb{P}^{ref} based on approximate data from π !

LRDS methodology. We combine the three following steps: 1. Generate approximate samples from π via MCMC;

2. Fit a Diffusion Model on this data to obtain \mathbb{P}^{ref} ;

3. Minimize the log-variance loss \mathcal{L} w.r.t. θ to obtain \mathbb{P}^{θ} .

) MCMC	(2) Learn Pref	(3) Learn \mathbb{P}^{θ}	(4) Run \mathbb{P}^{θ}
Local	 from MCMC	 using \mathbb{P}^{ref}	 🗸 Local
Global	data	with \mathcal{L}	✓ Global



0.000

0.001

References
[1] L. Richter and J. Ber
[2] F. Vargas, W. S. Gra
[3] Q. Zhang and Y. Che

as the reference ground truth.

0.0020.003

Limitations. Learning both \mathbb{P}^{ref} and \mathbb{P}^{θ} may be expensive in practice. Moreover, similarly to previous approaches, LRDS doesn't scale well with high dimension or with high number of modes.

> rner. Improved sampling via learned diffusions. In *ICLR*, 2024. thwohl, and A. Doucet. Denoising diffusion samplers. In *ICLR*, 2023. en. Path Integral Sampler. In *ICLR*, 2022.